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Finite-size scaling of the density of zeros of the partition function
in first- and second-order phase transitions

Richard J. Creswick and Seung-Yeon Kim
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The finite-size scaling form for the density of zeros of the partition function in first- and second-order phase
transitions is derived. Using the finite-size scaling of the density of zeros, the order of a phase transition can be
easily determined and the order parameter calculated from finite-size data. We illustrate the scaling theory
using exact values for the zeros of the partition function of the two-dimensional Ising model in the complex
magnetic-field plane.@S1063-651X~97!03107-3#

PACS number~s!: 05.50.1q, 05.70.2a, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

In 1952 Yang and Lee@1# proposed a mathematica
mechanism for the occurrence of phase transitions in
thermodynamic limit by introducing the concept of the zer
of the grand partition function. They also formulated the c
ebrated circle theorem stating that for the Ising ferromag
the zeros of the grand partition function in the complex m
netic field plane lie on the unit circle. Since then the zeros
the partition function have attracted continuous interest
1964 Fisher@2# initiated the study of the partition functio
zeros in the complextemperatureplane for the square lattic
Ising model. The study of the distribution of the partitio
function zeros in the complexmagnetic fieldor temperature
planes has been extended to the Ising model of arbitra
high spin @3#, the Ising model of multiple spin interaction
@4#, the three-dimensional Ising model@5,6#, the quantum
Heisenberg model@4#, the classicalXY and Heisenberg
model @7#, the continuous spin models@8#, the six-vertex
model @9#, the eight-vertex model@4#, the Potts model
@10,11#, the Blume-Capel model@12#, the hierarchical mode
@13#, etc. In particular, the circle theorem has been exten
to general Ising models and other models@4,11,12,14#.

Since its introduction in the early 1970s finite-size scal
theory@15# has been a very powerful tool in interpreting da
obtained in finite-size systems, especially in numerical sim
lation. While finite-size scaling theory at second-order ph
transitions has been well established@15,16#, finite-size scal-
ing theory at first-order phase transitions has a more re
history @17–21# and is a topic of considerable current inte
est. According to scaling arguments, it was shown@18# that
all finite-size effects at a first-order phase transition dep
on the volume of the systemLd. Binderet al. @19# proposed
a phenomenological double Gaussian approximation for
probability distribution of finite-size systems at a first-ord
transition, built on the theory of thermodynamic fluctuation
Lee and Kosterlitz@20# discussed the finite-size effects at
first-order transition by a mimic partition function. Borg
et al. @21# studied the phenomenological theory of finite-si
systems at a first-order transition from a rigorous point
view.

It is well known that in the thermodynamic limit first
order phase transitions are characterized byd-function sin-
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gularities in the second derivatives of the free energy at
transition point. However, in finite-size systemsd-function
singularities are rounded and theeffectivetransition point is
shifted. These behaviors at first-order transitions in fini
size systems are qualitatively similar to the finite-size effe
at second-order transitions. In the theory of Fisher a
Berker@18#, scaling at a first-order transition is treated ide
tically to scaling at a second-order transition with the te
perature or magnetic scaling exponents assuming the m
mal valuesyt ,yh5d. As a result, in a situation where th
order of a phase transition is not known, ordinary finite-s
scaling analysis may be ambiguous. The worst situation
weak first-order transition, for example, the temperatu
driven transition in the two-dimensional five-state Po
model @22–24#. This model suffers from severe crossov
effects @23,24# and has a very small latent heat@25# and a
very large~but finite! correlation length@23,26# at the critical
point. Currently, the best calculations of the order parame
and latent heat in the Potts models, which forQ.4 exhibit a
first-order transition in two dimensions, are low-temperatu
series expansions@27#. It is the purpose of this paper t
present an alternative approach based on the finite-size
ing properties of the distribution of Yang-Lee zeros. In a
dition to condensed matter physics, the identification of
order of a phase transition and the study of first-order ph
transitions are very important in particle physics, especia
in quantum chromodynamics and lattice gauge the
@24,28# and in the theories of the very early Universe@29#.

Until now the study of partition function zeros with finite
size scaling has been concentrated on the approach o
edge zeros to the real critical point@6,30,31#. However, the
density of zeros of the partition function contains more
formation about a system. In this paper we introduce fin
size scaling of the density of zeros that enables us to ext
this information from calculations on finite-size systems.
studying finite-size scaling of the density of zeros, we c
determine the order of a phase transition from finite-size d
and we can evaluate physical quantities such as the spo
neous magnetization and the latent heat. In this paper
give results for the Ising model in an external magnetic fie
which exhibits a first-order phase transition below the criti
temperature, but our method is very general and is exten
to other models easily, especially to the Potts model@32#.
2418 © 1997 The American Physical Society
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Here we use an exact numerical technique for evaluatio
partition functions, the microcanonical transfer mat
(mCTM!, recently invented by one of us~R.J.C.! @31#.

II. SCALING THEORY FOR THE DENSITY OF ZEROS

The Hamiltonian for the Ising model in an external ma
netic fieldH is

H52J(
^ i , j &

s is j2H(
i

s i , ~1!

whereJ is the exchange constant,^ i , j & means the sum ove
all nearest-neighbor pairs of lattice sites, ands i561. In the
thermodynamic limit, the free energy per sitef is

2b f 5bH1E
2p

p

g~u,t !ln~x2eiu!du, ~2!

where t5(T2Tc)/Tc , x5e2h, h52H/kBT52bH, and
g(u,t) is the density of zeros of the partition function, whic
satisfies the conditions

g~u,t !5g~2u,t ! ~3!

and

E
0

p

g~u,t !du5
1

2
. ~4!

The angleu is the argument of the zeros in the complexx
plane, which, by the Yang-Lee theorem@1#, lie on the unit
circle. The spontaneous magnetization (h50) is @1,33#

m0~ t !52pg~0,t ! ~5!

and the magnetization is given by@33#

m~ t,h!'4hE
0

p g~u,t !

u21h2 du. ~6!

It is well known that in the thermodynamic limit the prope
ties of the density of zeros determine the critical behavio
the Ising model@1,33#.

For a finite-size system of sizeL, the singular part of the
magnetization has the scaling form

m~ t,h,L !5L2d1yhm~ tLyt,hLyh!, ~7!

whereyh is the magnetic scaling exponent andyt the thermal
scaling exponent. From Eq.~6! we see that if the magnetiza
tion is to be a homogeneous function ofh, as in Eq.~7!, then
u should scale in the same way ash. Therefore, we have

g~u,t,L !5L2d1yhg~uLyh,tLyt!. ~8!

At the critical temperaturet50, Eq. ~8! reduces to

gc~u,L !5L2d1yhgc~uLyh!, ~9!

which implies

gc~u!;uuu~d2yh /yh!5uuu1/d. ~10!
of

-

f

For t,0 we expect the transition to be first order with
spontaneous magnetization given by Eq.~5!. If we let
u→0 andL→` keepinguLyh5c fixed, then

g~0,t !5 lim
u→0,L→`

g~u,t,L !

5S u

cD ~d2yh /yh!

gS c,tS u

cD 2yt /yhD;~2t !b, ~11!

where we have assumed the asymptotic form forg,

g~c,y!;~2y!b

for large negative values ofy, and we have used
b5(d2yh)/yt . Comparing Eqs.~5! and~11! we see that we
recover the familiar result

lim
t→02

m0~ t !;utub. ~12!

Well below the critical temperature, in the region of th
strong first-order phase transition, according to the theory
Fisher and Berker@18#, yt5yh5d, b50, and we have the
finite density of zeros on the positive real axis, which is
clear indicator of a first-order phase transition even in fini
size systems.

We can summarize these results as

lim
u→0

g~u,t !;H uuu1/d, t50 ~second order!

m0~ t !, t,0 ~first order!,
~13!

which is the magnetic analog of the result of Fisher@2# in the
complex temperature plane,

lim
u→0

g~u!;H uuu12a, second order

const~ latent heat!, first order.
~14!

III. NUMERICAL RESULTS

The partition functionZ(x) for finite rectangular lattices
as polynomials in the magnetic field parameterx5e22bH

can be calculated by the microcanonical transfer matrix@31#.
These calculations were carried out for square lattices
sizes 4<L<14 with cylindrical boundary conditions an
sizes 4<L<10 for square lattices with fully periodic bound
ary conditions. For the smaller lattices it is possible to obt
exact integer values for the restricted density of sta
V(M ,E), which leads to the analytic form forZ,

Z~x,y!5(
M

(
E

V~M ,E!yExM, ~15!

wherey5e22bJ. For latticesL.10, memory limitations re-
quired us to use the restricted canonical transfer mat
which yields, for a fixed value ofy, the coefficients

v~M !5(
E

V~M ,E!yE ~16!

as real numbers of finite precision.
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The calculations of the zeros of such large polynomi
require arbitrary precision arithmetic; our calculations we
carried out usingMATHEMATICA . The zeros forL510,
y5yc50.4142 . . . are shown in Fig. 1 for illustrative pu
poses, and as expected they lie on the unit circle.

Below yc the zeros approach the real axis and in the lim
y→0 the zeros are uniformly distributed on the unit circ
As y is increased aboveyc a gap opens up and the edge ze
or the Yang-Lee edge singularity@34,35#, moves away from
the real axis. By using the BST algorithm@36#, we extrapo-
lated our results for finite lattices to infinite size, and the
results are shown in Fig. 2. Note that belowyc the edge zero
lies on the real axis, while asy increases beyondyc , the
angle for the edge zerou0 increases. Using Eq.~8!, the angle
for the edge zero for finite-size systems scales as

u0~ t,L !5L2yhu0~ tLyt!, ~17!

so that in the limitL→` we have, fort.0,

u0;tnyh5t15/8. ~18!

FIG. 1. Zeros of the partition function for a 10310 Ising model
in the complex-x plane aty5yc50.4142 . . . .

FIG. 2. Edge zero in the complex-x plane as a function ofy. The
solid curve is a fit to the scaling formu0(y)}(y2yc)

15/8.
s
e

t
.
,

e

Equation ~18! agrees with the result of Abe@33#, Suzuki
@33#, Kortman and Griffiths@34#, and Itzyksonet al. @6#. The
solid curve in Fig. 2 is a one-parameter fit to Eq.~18!.

The density of zeros~per site! at ū k5(uk111uk)/2 is
defined as

g~ ū k!5
1

N

1

uk112uk
, ~19!

whereN5Ld and$uk ,k51, . . . ,N% are the arguments of th
zeros ofZ(x). In Fig. 3 we show the density of zeros fo
L514, y5yc , andy50.5yc . Note that well below the criti-
cal temperature the density is nearly constant, while clos
the critical point it decreases sharply asu tends to zero.
Similar results for much smaller lattices have been repor
by Suzukiet al. @37#.

To extract the behavior of the density of zeros in t
infinite size limit, we again applied the BST algorithm.
Fig. 4 we show the density atu50 ~normalized to unity at
zero temperature! and compare it with Onsager and Yang
exact solution for the spontaneous magnetization@38#. Well
below the critical temperature our extrapolated values, wh
scale asL22, agree very well with the exact spontaneo
magnetization. Close to the critical temperature, the do

FIG. 3. Density of zeros forL514, cylindrical boundary condi-
tions, for y5yc ~filled circles! andy50.5yc ~open triangles!.

FIG. 4. Extrapolated density of zeros as a function ofy. The
solid curve is Onsager and Yang’s exact result for the spontane
magnetization. Open circles are our results for cylindrical bound
conditions and open squares are for periodic boundary conditio
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56 2421FINITE-SIZE SCALING OF THE DENSITY OF ZEROS . . .
nant scaling exponent crosses over to the magnetic expo
yh515/8. The error bars on our data are estimates from
penultimate BST extrapolants, as described by Henkel
Schütz @36#. It is well known @36# that the BST algorithm
does not work well for functions of the form

g~x!5g01xp~a01a1x1••• !, ~20!

which is what one expects near the critical point. This
clearly shown in our calculations close toyc , where the
agreement is not as good. Also, we expect finite-size sca
to work well whenj;L, and forL of the order 14 this limits
us toy/yc ;

, 0.97.

IV. CONCLUSION

The development of techniques@30,31# for calculating the
partition function of finite systems has led to the possibil
of studying in detail the zeros of the partition function.
order to extrapolate the behavior of the zeros for finite
tices to the thermodynamic limit, we have introduced t
finite-size scaling form for the density of zeros of the pa
tion functiong(u).

We find that the behavior at both first- and second-or
transitions can be understood from the finite-size sca
form of the density of zerosg(u,t,L). Figures 2–4 show the
clear difference between a first-order phase transition an
second-order phase transition. Furthermore, quantities
as the order parameter, which are difficult to calculate
other numerical methods, can be found directly from
r,
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density of zeros. The power of this approach is illustrated
our calculation of the spontaneous magnetization of the Is
model, which reproduces the exact result of Onsager
Yang @38# except very close to the critical point. Howeve
we should emphasize that this approach is not limited
problems whose solution is known exactly@39#; the micro-
canonical transfer matrix can be used to calculate the p
tion function for any two-dimensional system and som
~small! three-dimensional lattices. We are currently carryi
out calculations for theQ-state Potts models forQ53;8 on
relatively small two-dimensional lattices using themCTM
@32#. Larger lattices~and bigger values ofQ) require the use
of umbrella samplingtechniques. Calculations for the thre
dimensional Ising model in the magnetic-field variable@40#
have been completed. Calculations for theQ-state Potts
models forQ>3 on large two- and three-dimensional la
tices @41# are currently in progress.

In addition to the density of zeros at and below the critic
temperature, which is the main interest of this paper,
density of zeros above the critical temperature can be stu
using our method. Kortman and Griffiths@34# showed that
above the critical temperature the density of zeros at
Yang-Lee edge is singular for the two-dimensional Isi
model. This behavior of the zeros above the critical tempe
ture has also been studied for the hierarchical model@42# and
other models@35,43# and by conformal field theory@44#. The
details on zeros above the critical temperature are planne
be addressed in another paper@45#.
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